Consequently

$$
\left(\frac{r-s}{\alpha}-\|x\|\right) \frac{1}{\varepsilon-\|x\|}>\lambda(z)
$$

Using the inequality $(m(z), x) \leqslant\|m(z)\|\| \|=\varepsilon\|x\|$, we have

$$
\{-m(z) / \varepsilon, x+\lambda(z)(m(z)-x)\rangle>(s-r) / \alpha
$$

Using Eq. (2.3) we obtain the required condition (3.8).
The game can, thus be completed from the initial position z° in a finite time, if its parameters are connected by relation (3.9). The controls of the pursuers are constructed as in the preceding example.

REFERENCES

1. PSHENICHNYI B.N., Simple pursuit by several objects. Kibernetika, 3, 1976.
2. PSHENICHNYI B.N. and RAPPOPORT I.S., On the problem of group pursuit. Kibernetika, 6, 1979.
3. PSHENICHNYI B.N., CHIKRII A.A, and RAPPOPORT I.S., An effective method of solving differential games with many pursuers. Dokl. AN SSSR, 256, 3, 1981.
4. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, Nauka, 1974.
5. PONTRYAGIN L.S., Linear differential games of pursuit. Matem. sb., 112, Issue 3, 1980.
6. GRIGORENKO N.L., on the linear probiem of pursuit by several objects. Dokl. AN SSSR, 258, 2, 1981.
7. PSHENICHNYI B.N., Convex Analysis Extremal Problems. Moscow, Nauka, 1980.
8. PSHENICHNYI B.N., The Necessary Conditions for an Extremum. Moscow, Nauka, 1982.
9. VARGA J., Optimal Control by Differential and Functional Equations. Moscow, Nauka, 1977.

Translated by J.J.D.

PMM U.S.S.R. VOL.49,No.4, DP. 404-413.1985

OPTIMAL CONTROL WITH A FUNCTIONAL AVERAGED ALONG THE TRAJECTORY*

A.I. PAMASYUK and V.I. PANASYUK

A set of infinite optimai trajeztories (IOT: is defined. It is shown that ir an arbitrary fixed time interval any optimal trajectory of a system for a froblem with fairjy large control time (and arbitrary initial conditions; can be unifomiy approximated to some IOT with the desirea accuracy. Sufficient conitions are presented which ensure the existence of iot, and the structure of the IOT set is investigated, using the rearrangement operator. The set of main trajectories is definea, and the correctness of that defirition is proved. A Chain of approximations is obtained: IOT approximate optimal trajectories of finite length, ard the main. trajectories approximate the IOT.

The properties of optirai tzajectories of consideratle length, and of IoT and main trajectories are investigated by solving the problem of optimal control, with a furctional averaged along the trajectory. It is shown that a limit time-averaged value of the quality functional on optimal trajectories of the problems in a finite interval, when its duration increases without limit, does exist, is independent of the selection of the initial and finite conditions of these problems, and is equel to its value on any rot. For a problem of "optimur in the mean" control the exact lower bound of the functional averaged over time does not change, if one limits the consideration oniy to periodic modes of the system with all possible perioàs. The paper continues investigations carried out in /1-4/. A somewhat different aspect of the problem of the asymptotic forms of the optimal trajectories of a control system was studied in $/ 5,6 /$, and a number of similar problems was investigated in /7-11/etc. Generaizations to problems with discrete times were considered in. /12, 13/.

1. Formulation of the problem. The following problem of optimal control is considered:

$$
\begin{equation*}
\frac{d x}{d t}=f(x, u), \quad u \subseteq U \subset R^{r} ; \quad x \subseteq X \subset R^{n} \tag{1.1}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
I\left(x(\cdot), u(\cdot), t_{0}, T\right)=\int_{i_{0}}^{T} F(x, u) d t \rightarrow \min ; t_{0}, T=\mathrm{const} \tag{1.2}
\end{equation*}
$$

\]

where the set X is closed and U is compact. The functions $f(x, u), F(x, u)$ are continuous, and $f(x, u)$, in addition, satisfies the following condition: $L>0$ and $\varepsilon>0$ are obtained for $x \in X$, such that $\left\|f\left(x^{\prime}, u\right)-f\left(x^{\prime \prime}, u\right)\right\| \leqslant L\left\|x^{\prime}-x^{*}\right\|$, when $x^{\prime}, x^{\prime \prime} \in X,\left\|x^{\prime}-x\right\|<\varepsilon,\left\|x^{n}-x\right\|<\varepsilon$, $u \in U$. Here $\|\cdot\|$ is the Euclidean norm. The meásurable vector functions $u(t) \in U$ represent admissible controls, and the absolutely continuous vector functions $x(t)$ that satisfy almost everywhere (1.1) for some admissible control represent the trajectories. The asymptotic properties of optimal trajectories are investigated as $T \rightarrow \infty$.
2. Infinite optimal trajectories. The admissible control $u^{\circ}(t), t_{0} \leqslant t \leqslant T$ and any of its respective trajectories $x^{a}(t), t_{0} \leqslant t \leqslant T$ are called optimal, if for any other admissible control $u(t)$ and any corresponding trajectory $x(t), t_{0} \leqslant t \leqslant T$ that satifies the boundary conditions $x\left(t_{0}\right)=x^{0}\left(t_{0}\right), x(T)=x^{0}(T)$, the inequality $I\left(x(\cdot), u(\cdot), t_{0}, T\right) \geqslant I\left(x^{0}(\cdot), u^{0}(\cdot), t_{0}, T\right)$ is satisfied. The principle of optimality consists in the fact that any part (arc) $x^{0}(t), t_{0} \leqslant$ $\xi_{1} \leqslant t \leqslant \xi_{2} \leqslant T$ of the optimal trajectory $x^{c}(t)$ is itself an optimal trajectory.

Definition. An admissible control $u^{\circ}(t)$ and some corresponding trajectory $x^{\circ}(t)$ defined on the set J from R of one of the following types: $\quad-\infty<t<\infty ;-\infty<t \leqslant b ; a \leqslant t \leqslant b$; $a \leqslant t<\infty$ are called optimal, if for any segment $\left\{\xi_{1}, \xi_{2}\right] \subset J$ the contractions $x^{0}(t), u^{0}(t)$ on $\xi_{1} \leqslant t \leqslant \xi_{2}$ are the optimal trajectories and control. We call the optimal trajectory $x^{0}(t),-\infty<$ $t<\infty \quad$ ar infinite optimal trajectory (IOT). $/ 2,4 /$.
3. Passing to the limit over successions of trajectories. We use the following notation:

$$
\begin{aligned}
& q^{*}=\left(q, q_{n+1}\right) \equiv R^{n+1} \\
& G^{*}(x)=\left\{q^{*}: q=f(x, u), q_{n-1} \geqslant F(x, u), u \in C\right\}
\end{aligned}
$$

Theorem 3.1. For $x \in X$ suppose the set $G^{*}(x)$ is convex and the succession of trajectories $x^{k}(t),-\infty<a \leqslant t \leqslant b<\infty, k \rightarrow \infty$ corresponding to some admissible $u^{k}(t)$ is uniformly convergent to $x(t)$ on $[a, b]$. Then $x(t)$ is the trajectory that corresponds to some admissible controi $u(t), a \leqslant t \leqslant b$ that satisfies the inequality

$$
\begin{equation*}
I(x(\cdot) \cdot u(\cdot): a \cdot b) \leqslant \lim _{k \rightarrow \infty} I\left(x^{k}(\cdot), u^{k}(\cdot), a, b\right) \tag{3.1}
\end{equation*}
$$

The proof is carried out using the scheme giver. in /14! pp.95-104.
We denote by $A(\varepsilon, x), \varepsilon>0$ the set of points in X reached from $x \in X$ in exactiy the time ε. Correspondingiy, $A(-\varepsilon, x) \subset X$ is the $s e=$ of points from which x is reached in a time ع. We say that system (1.1) is positively (nesetively) locally controllable along the trejectory $x(t), a \leqslant t \leqslant b$ when $t=t^{*} \cong(a, b)$, if an $\varepsilon_{0}>0$ can be found for which when $0<$ $\varepsilon<\varepsilon_{0} \quad$ the inclusion $x\left(t^{*}+\varepsilon\right) \in \operatorname{lnt} A\left(\varepsilon . x\left(t^{*}\right)\right)$ hcids, (respectively $\quad x\left(t^{*}-\varepsilon\right) \subseteq \operatorname{lnt} A(-\varepsilon$, $\left.x\left(t^{*}\right)\right)$. We say that the system is controliable in the limit on an infinite trajectcry $x(t)$, $-\infty<t<\infty$, if successions $t_{k}^{\prime} \rightarrow-\infty . t_{k}^{\prime \prime} \rightarrow \infty$ as $k \rightarrow \infty$ are fcund such that the system is negatively locally controllable on $x(\cdot)$ when $t=t_{k}$, and positively locally controllable along $x(\cdot)$ when $t=t_{k}{ }^{\prime \prime}, k \geqslant 1$.

From (3.1) anc the limit controllability we obtain.
Theorem 3.2. Let the set $G^{*}(x)$ be convex wher $x \subseteq X$, and the continuous function $x(t) \leqslant X,-\infty<t<\infty$ be on each segment $a \leqslant t \leqslant b$ is a uniform limit of some succession of optimai trajectories, dependent on $[a . b]$. Then $x(t)$ is a trajectory. If the system (1.1) is additionally controllable on $x(\cdot)$, then $x(\cdot)$ is an IOT.
4. The rearrangement operator $11 / 2,4 /$. We denote for the compactum $D \subset X$ the topological space $C(R, D)$ of all continuous mappings $R \rightarrow D$ with topology of uniform convergence on compacta. For the subset $W^{\prime \prime} \subset C(R . D)$ we define the rearrangement operator $\Pi\left(W^{\prime}\right) \subset C(R, D)$ transforming the subsets from $C(R, D)$ into subsets from $C(R, D)$ according to the formulae

$$
\Pi\left(W^{\prime}\right)=\overline{S W^{\prime}}, S W^{\prime}=\bigcup_{\Phi(\cdot) \in W^{\prime}} \bigcup_{\tau \in R} \varphi_{r}(\cdot) ; \varphi_{\tau}(t) \equiv \varphi(t+\tau)
$$

and the closure is taken in $C(R, D)$. i.e. the operator Π converts W^{\prime} into the subset from $C(R, D)$ obtained by the closure of all possible displacement $\varphi_{\mathbf{y}}(\cdot)$ of all mappings from $W^{\prime \prime}$. The properties of the rearrangement operator can be verified directly.

Theorem 4.1. Let $W^{\prime \prime}, W^{\prime \prime} \subset C(R, D)$. Then $S \Pi\left(W^{\prime \prime}\right)=\Pi\left(W^{\prime}\right) ; W^{\prime} \subset \Pi\left(W^{\prime}\right) ; \quad \Pi \Pi\left(W^{\prime}\right)=\Pi\left(W^{\prime \prime}\right)$; $\Pi\left(W^{\prime}\right) \cup \Pi\left(W^{\prime \prime}\right)=\Pi\left(W^{\prime \prime} \cup W^{\prime \prime}\right) ; \Pi\left(W^{\prime} \cap W^{\prime}\right) \subset \Pi\left(W^{\prime \prime}\right) \cap \Pi\left(W^{\prime \prime \prime}\right)$.

Consider some subset $T \in C(R, D)$ invariant under the rearrangement operator $\Pi(V)=1$, and introduce on V a new topology, assuming to be closed those and only those subsets V " V that $\Pi\left(V^{\prime}\right)=V^{\prime}$. We denote the topological space obtainea by I_{*}. It follows from Theorem 4.1 that Π is an operator of closure. Then by virtue of the kuratowski theorem/15/we obtain that the sets invariant relative to the operator Π can be investigated using topological means.

Corollary 4.1. The topology of the space V_{*} is correctly defined.
Let $W^{\prime} C C(R, D)$ be some set of IOT. We say that the optimality is invariant under the action of Π on W^{\prime}, when $\Pi\left(W^{\prime}\right)$ consists of IOT. We denote by W_{D} the set of all IOT lying in D. From Theorem 3.2 we obtain the sufficient conditions of invariance of optimality relative to 11 .

Corollary 4.2. Let the set $G^{*}(x)$ be convex, and when $x \equiv D$ the system is controllable in the limit on any trajectory $x(1) \cong D .-\infty<t<\infty$ lying in the compactum D. Then for any non-empty set of IOT $W^{\prime} \subset C(R, D), W^{\prime} \neq Q$, the optimality is invariant under the action of Π on W^{\prime}. If in addition $W_{D} \neq \varnothing$. then $\Pi\left(W_{D}\right)=W_{D}$.
5. The set of main trajectories. For the compactum $D C X$ the set $W_{D} \subset W_{D}$. which is non-empty and satisfies three conditions:

1) of approximation: $\Pi(\varphi(\cdot)) \cap H_{D}{ }^{c} \neq C$ when $ष(\cdot) \in W_{D}$,
2) of closure $\Pi\left(W_{D}{ }^{\circ}\right)=W_{D}{ }^{5}$.
3) of minimality: Wr does not contain a proper subset that does satisfy the conditions of approximation and closure, will be called the set of main trajectories for WD. The correctness of this definition is confirmed by the following theorem.

Theoren 5.1. Let the optimality $H_{p} \neq$? be invariant under the action of Π of Mr Then $\Pi\left(H_{D}\right)=H_{L}$: the set of main trajectories H_{D} ofor H_{D} exists and is unique.

Proof. Consider the set Φ of ail subsets $Q=W^{\prime} \in W_{D}$ that satisfy the conditions of approximation and closure. Then $W_{L} \in \Phi$, and it can be shown that the intersection of a finite number of subsets from Φ is, again, an element of Φ, i.e. Φ has the property of finite intersection /15\%. The equipotential continuity trajectories in the compactum D, and the invariance $\Pi\left(W_{D}\right)=W_{D}$ impiles, by Ascoli's theorem the compactness of W_{D} From this P W' $=$ $\approx W^{\prime \prime} \in \Phi$ and it is sufficient to set $W_{L}{ }^{\circ}=H_{i} W^{\prime \prime} W^{\prime \prime} \equiv \Phi$.

If X is a compactur, we use the notation $W=W_{X}, W^{c}-W_{x}$, and simply call we the set of mair trajectories.

Theorem 5.2. Let X be a compectim, and iet $G^{*}(x$ be convex for $x \in X$; for $a n y \quad T>0$ a trajectory of duration T, can be fouridara the syster is, in the limit, controllable or any trajectory $x(t) \equiv X,-\infty<t<\infty$. Ther the set W of Iot is non-empty: $H \neq ?$ and the optimality of trajectories is invariant to the action of Π on W : Π (W) $=W$. The set W of main trajectories exists and is unique.

Froof. The availability cf trajectories of any duration ensures the presence of minirizing successions defined on any time intervals. Hence, by virtue of Theorem 3.1 optimal trajectcries of arbitrary duration also exist. UsingAsccli's theorem for selectingasuccession of optimal trajectories defined on a system of intervals which extends without limit and uniformly or compacta, converging to some curve $x(t) \in X,-\infty<1<\infty$, we obtain by Theorer. 3.2 . that $x(\cdot) \in W$, whence $W=0$. The remaining statements follow from corollary 4.2 and Theoxem 5.1.
6. The chain of approximations. We say that the set of optimai trajectoxies from D is closed in the topology of uniform convergence or compacta from ($-\infty$. ∞). if it follons from that $x(t)$ is an IOT ana the vector function $x(t) \approx D,-\infty<t<\infty$ in each segment $[a, b]$ is the uniform limit of some succession of optimal trajectories defined in $[a . b]$ dependent on $[a, b]$. Theorem 3.2 provides the sufficient conditions of such closure.

Corollary 6.1. Let the set $G^{*}(x)$ be convex when $x=X$, and system (1.1) be controllable at the limit on any trajectory $f(t) \leq D,-\infty<t<\infty$ from the compactum D. Then the set of optimal trajectories frow D is closed in the topology of uniform convergence on compacta from $(-\infty, \infty)$.

We denote by $W_{D}\left(t_{1}, t_{2}\right)$ the set of all optimal trajectories $x(t) \in D, t_{1} \leqslant t \leqslant t_{2}$, and by $W_{D}\left(t_{1}, \theta_{1}, \theta_{2}, t_{2}\right)$ the set of trajectory contractions from $W_{D}\left(t_{1} ; t_{2}\right)$ on $\left\{\theta_{1}, \theta_{2}\right\} \in\left[t_{1}, t_{2} \mid\right.$.

Theorem 6.2. (see /2/ p.61). Let $W_{D} \neq \mathcal{Z}$; the set of optimal trajectories from D is closed in the topology of uniform convergence on compacta from $(-\infty, \infty)$. Then for any $\theta_{1}<\theta_{2}$ and $\varepsilon>0$ we can indicate T_{1} and T_{2} such that when $t_{1} \leqslant T_{1}, t_{2} \geqslant T_{2}$ for any $x^{\circ}(\cdot) \in$ $W_{D}\left(t_{1}, \theta_{1}, \theta_{2}, t_{2}\right)$ we can find an IOT $q(\cdot) \in W_{D}$ such that $\left\|x^{e}(t)-4(t)\right\|<\varepsilon$ for $t_{1} \leqslant \theta_{1} \leqslant t \leqslant$ $\theta_{2} \leqslant t_{2}$.

Taking into account that from the closure of the set of optimal trajectories from D their
follows the invariance of the optimality relative to the action Π on W_{D}, from the condition of approximation in the definition of the set of main trajectories the characteristic of approximation properties of the main trajectories can be similarly obtained.

Theorem 6.2. Let $W_{D} \neq C$ and the set of optimal trajectories from D be closed in the topology of uniform convergence on compacta from ($-\infty, \infty$). Then for any $T>0$ and $\varepsilon>0$ an $M=M(T, \varepsilon)$ can be found that satisfies the following condition: for any optimal trajectory $x^{\circ}(t)=D, 0 \leqslant t \leqslant M$ a main trajectory $T(\cdot) \subseteq W_{D}^{\circ}$ and t_{1} are found such that $\left[t_{1}, t_{1}+T\right] \in[0$, $M]$ and $\left\|x^{e}(t)-\varphi(t)\right\|<\varepsilon$ for $t \in\left[t_{1}, t_{1}+T\right]$.

Theorems 6.1 and 6.2 show that the sets of W_{D} and $W_{D}{ }^{\circ}$ constitute a chain of approximations: IOT approximate optimal trajectories of finite duration, while the main trajectories reflect the symmetric properties of IOT.
7. Averaging of the functional along the optimal trajectory. Let us consider now the problems of characterizing $I O T$ and main trajectories, using the problem of optimization with the functional averaged along the trajectory. Let $u_{0}(t)$ be the optimal control and $x_{0}(t), t_{n} \leqslant t \leqslant t_{n}+T$ some optimal trajectory corresponding to it. Then the minimum $I\left(x_{0}(\cdot)\right.$, $\left.u_{0}(\cdot), t_{0}, t_{0}+T\right)=\min I$ is reached for it in conformity with the definition of an optimal trajectory. The averaged functional is then also minimal

$$
\frac{1}{T} I\left(x_{0}(\cdot), u_{0}(\cdot), t_{0}, t_{0}+T\right)=\min \frac{1}{T} I
$$

because T is a given constant. However our aim is not the investigation of one optimization problem for any fixed T, but a complete set of such problems differing by the time T of the process and, also, the clarification of the behaviour of optimal trajectories as $T \rightarrow \infty$. Hence letting $T \rightarrow \infty$, we obtain the averaged problem of minimizing the limit

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{i_{0}}^{t_{0} \dot{T} T} F(x(t), u(t)) d t \rightarrow \min \tag{7.1}
\end{equation*}
$$

on some set of adrissible controls and trajectories on $\left[t_{0}, t_{0}+T\right]$. By the same token we take $u(t), x(t), t_{0} \leqslant t<\infty$, the limit (7.1) is calculated as $T \rightarrow \infty$, and then the minimum of that limit is sought on the set of admissible controls and trajectories on $\left[t_{0}, \infty\right)$.

However, this is insufficient for the statement of the problem of optimal control with a functional averaged along the trajectory to be correct and to be a useful method of investigation. First, the limit (7.1) does not exist for any controls and trajectories, hence the question of its existence must be separately considered. second, the solution of problem (7.1) must definitely indicate the trajectory on which that minimum is reached. At the same time one and the same value of limit (7.1) as $T \rightarrow \infty$. if it exists, corresponds to trajectories and controls in an infinite time interval affering only in some finite time interval. Hence the criterion of optimality (7.2), where a minimat is sought on a fairly wide set of trajectories and controls Ω defines not a single trajectory, but a whole set of trajectories and controls for which a minimur is attained. To avoid suen ambiguity one has to narrow the set of pairs Ω on which the minimur. $\bar{T}, 1$; is sought. Such narrowing may lead to the existence of the limit (7.1) (e.g., if we take $\Omega=\Omega_{n}$, where Ω_{n} is the set of admissible periodic modes). Thira, the averaged probiem (7.1) must have a solutior. For instance, by narrowing Ω to periodic modes $\Omega=\Omega_{n}$. we obtain the problem of periodic optimization (po) whose solution (optimum cycle), if it exists, is uniquely determined, except the special cases of optimal cycle non-uniqueness. However, the minimum of (7.2) may not be reached. Simultaneously the widening of modes of Ω to the almost periodic modes $\Omega=\Omega_{n n} / 4 /$ may ensure the existence of a solution. This shows the value of wideaing Ω to the set of almost periodic modes.
8. The standard large variation of the trajectory. We say that the system (1.1) is uniformly controilable on compacta $D \subset X$, if and only if, there exists a compactum $K=X$ and a number $M>0$ such that for any two points $x_{0}, x_{M} \in D$ a trajectory $x(t) \in K, 0 \leqslant i \leqslant$ $M, x(0)=x_{0}, x(M)=x_{M}$ car. be found.

Consiaer two trajectories $x_{0}(t) . x(t) \leqslant D . a \leqslant t \leqslant b, b-a \geqslant 2 M$ of which $x_{0}(\cdot)$ is optimal. We construct the trajectories $x_{1}(t) \in K, a \leqslant t \leqslant a+M, x_{1}(a)=x_{0}(a), x_{1}(a+M)=x(a+M), x_{2}(t) \in$ $K, b-M \leqslant t \leqslant b, x_{2}(b-M)=x(b-M), x_{2}(b)=x_{0}(b)$ and determine the larger variation $y(t)$, $a \leqslant t \leqslant b$ of the trajectory $x_{0}(\cdot)$ by formulae $y(t)=x_{1}(t)$ when $a \leqslant t \leqslant a+M ; y(t)=x(t)$ when $a+M \leqslant t \leqslant b-M$, and $y(t)=x_{2}(t)$ when $b-M \leqslant t \leqslant b$. From the compactness of $K \times U$ and the continuity of $F(x, u)$ it follows that for some $N=N(D)$ the inequalities

$$
\begin{aligned}
& I\left(x_{1}(\cdot), a, a+M\right) \leqslant N, I\left(x_{2}(\cdot), b-M, M\right) \leqslant N \\
& |I(x(\cdot), a, a+M)| \leqslant N,|I(x(\cdot), b-M, M)| \leqslant N
\end{aligned}
$$

hold.
By virtue of the optimality $I\left(x_{0}(\cdot), a, b\right) \leqslant I(y(\cdot), a, b)$, whence we obtain the basicinequality
for the standard large variation

$$
\begin{equation*}
I\left(x_{0}(\cdot), a, b\right) \leqslant 4 N+I(x(\cdot), a, b) \tag{8.1}
\end{equation*}
$$

Let us fix $\omega>0$. Let there be some sequence $\tau_{k} \rightarrow \infty, \tau_{k} \geqslant \omega, k \rightarrow \infty$, and functions $g_{k}(t)$, $t_{0}<t<\tau_{k}$ that are Lebesgue summable. We shall consider the integrals

$$
\alpha_{k}=\frac{1}{\tau_{k}} \int_{i_{k}}^{t_{1}+\tau_{k}} g_{k}(t) d t, \quad \beta_{k}\left(\theta_{k}\right)=\frac{1}{\omega} \int_{\theta_{k}}^{\theta_{k}+\omega} g_{k}(t) d t
$$

Using the Lebesgue integral, we obtain the following statement.
Lemma 8.1. Let $\left|g_{k}(t)\right|<M_{0}$ when $k \geqslant 1,-\infty<t<\infty$ for some M_{0}. Then θ_{k} can be selected to satisfy the condition $\beta_{k}\left(\theta_{k}\right)-\alpha_{k} \rightarrow 0,\left[\theta_{k}, \theta_{k}+\omega\right] \subset\left[t_{0}, t_{0}+\tau_{k}\right]$ as $k \rightarrow \infty$.
9. The existence of a unique limit for the functional averaged over optimal trajectories. For brevity, we shall write $I(x(\cdot), a, b)$ instead of $I(x(\cdot), u(\cdot), a, b)$.

Theorem 9.1. Let syistem (1.1) be uniformly controllable on the compactum $D \subset X$, and for any $T>0$ suppose the set $W_{D}(T)$ of optimal trajectories of duration T lying entirely in D is non-empty. Then the limit

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} I\left(x_{T}(\cdot), 0, T\right)=C_{0}=C_{0}(D) \tag{9.1}
\end{equation*}
$$

exists and is independent of the selection of $x_{T}(\cdot) \in W_{D}(T)$.
Proof. Assuming that the theorem is false, we find sequences $x_{0 k}(\cdot) \in W_{D}\left(\tau_{k}\right)$ and $x_{0 m}(\cdot) \in$ $W_{D}\left(T_{m}\right)$ that satisfy the inequality

$$
\begin{equation*}
C^{\prime}=\lim _{k \rightarrow \infty} \frac{1}{\tau_{k}} \int_{0}^{\tau_{k}} F\left(x_{0 k}(t), u_{0 k}(t)\right) d t<C^{*}=\lim _{m \rightarrow \infty} \frac{1}{T_{m}} \int_{0}^{T_{m}} F\left(x_{0 m}(t), u_{0 m}(t)\right) d t \tag{9.2}
\end{equation*}
$$

where $x_{0 k}(\cdot), x_{0 m}(\cdot)$ correspond to $u_{i k}(\cdot), u_{m}(\cdot)$, while $\tau_{k}, T_{m}-\infty$ for $k, m \rightarrow \infty$ we $\mathrm{mix}_{\mathrm{m}} \mathrm{m} \geqslant 1 \mathrm{such}$ that $T_{m} \geqslant 2 M$ and put $\omega=T_{m}$. According to Lemma $8.1 \theta_{1} . k_{m}$ can be found such that

$$
\begin{equation*}
\left|P_{k}\left(\theta_{k}\right)-a_{k}\right|<\frac{1}{m} \text { For } k \geqslant k_{m^{\prime}} \xi_{k}(t)=F\left(x_{0 k}(t), u_{0 k}(t)\right) \tag{9.3}
\end{equation*}
$$

By an appropriate selection of the reference point on trajectories x (.), we can obtain $\theta_{k}=0$ (then the trajectories themselves are defined for $-\theta_{k} \leqslant t \leqslant \tau_{k}-\theta_{k}$, and $\tau_{k}-\theta_{h} \geqslant T_{m}$). We construct a standard large variation of trajectories, taking $x_{3 m}(t) a s x_{0}(t)$, and setting a $=$ $0, b=T_{m}$. Then, by virtue of (8.1) we obtain

$$
I\left(x_{0 m}(\cdot), 0, T_{m}\right) \leqslant 4 N-1\left(x_{0,}(\cdot), 0, T_{m}\right)
$$

which implies

$$
\left.T_{m}^{-1} f\left(x_{\cdot m_{i}}(\cdot), 0, T_{n_{i}}\right) \leqslant T_{m}^{-1}\right)\left(F_{c k}(\cdot), 0, T_{m_{i}}\right)+T_{m_{i}}^{-1} 4
$$

ana from (9.3), taking into account $\theta_{k}=0$, we obtain

$$
\left|T_{m}^{-1} l\left(x_{0 k}(\cdot), 0, T_{m}\right)-\tau_{k}^{-1} l\left(r_{0 k}(\cdot), 0, \tau_{k}\right)\right| \leqslant m^{-1}, \quad k \geqslant k_{m}
$$

It follows from the last two inequalities that

$$
T_{m}^{-1} f\left(x_{0 m}(\cdot), 0, T_{m}\right) \leqslant \tau^{-1 J}\left(x_{0 k}(\cdot), 0, \tau_{k}\right)+T_{m}^{-1} 4 v+m^{-1}, \quad k \geqslant k_{m}
$$

By letting $m \rightarrow \infty$ here we obtain $C^{n} \leqslant C^{\prime}$, which contradicts (9.2).
By the problem of average-optimal contrcl, with the functional averaged along the trajectory, we mean the problem of minimizing

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} F(x(t), u(t)) d t \rightarrow \min \tag{9.4}
\end{equation*}
$$

on some set Ω of admissible controls and trajectories defined for $-\infty<t<\infty$. That the lower Ifmit of integration in (9.4) is zero, is imaterial by virtue of Theorem 9.1. Moreover, Theorem 9.1 implies that for any IOT lying in the compactum D on which the system is uniformly controllable, the limit $(9,4)$ exists and is equal to $C_{0,} i$.e. is independent of the choice of the IOT.

We denote by $\Omega_{n}{ }^{D}$ the set of all periodic modes $x(t)$, $u(t)$ of system (1. 1) such that the cycle $x(\cdot)$ intersects the set D. The method used for Theorem 9.1 enables us to prove the following theorem.

Theorem 9.2. Let system (1.1) be uniformly controliable on the compactum $D \in X ; W_{D}(T) \neq$ \varnothing when $T>0$. Then the quantity C_{0} defined in Theorem 9.1 satisfies the equation

$$
\inf _{x(\cdot), v(\cdot) \in O_{n}} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} F(x(t), u(t)) d t=C_{0}
$$

and, in particular, if $D=X$, then all periodic modes appear as $\Omega_{n}{ }^{D}$.
This equation justifies the part played by the problem of periodic optimization as the problem of averaging. It shows that using the periodic mode it is possible to approximate by the averaged functional any optimal process of infinite duration $-\infty<t<\infty$, with a specified accuracy. If one considers that the problem of periodic optimization, which is the simplest of problems of optimal control with a functional averaged along the trajectory, which has such property, and that periodic modes are the simplest to obtain in practice, their part in the main asymptotic mode becomes clear $/ 2-4,13 /$.
10. The problem of periodic and almost-periodic optimization (PO and APO) as special cases of problems of average-optimal control. The problem of po may be presented in three forms. The first form: determine the periodic trajectory from the set W of IOT. The second form: find the admissible periodic mode

$$
\begin{equation*}
\inf _{x(\cdot), u(\cdot) \in Q_{n}} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} F(x(t), u(t)) d t \tag{10.1}
\end{equation*}
$$

the exact lower limit for which would be reached, and the third form; to minimize the functional

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} F(x(t), u(t)) d t \rightarrow \min _{u(\cdot), x(\cdot), \tau} \tag{10.2}
\end{equation*}
$$

under conditions of periodicity $x(\tau)=x(0)$, where $\tau>0$ is not specified.
Theorem 10.1. Let X be a compactum and let the system (1.1) be uniformiy controllable on X. The three statements of the problem of po are equivalent.

Proof. Implication $1 \rightarrow 2$. If $x(\cdot)$ is a periodic trajectory from W, then according to Theorem 9.1 the precise lower limit (10.1) is achieved on $x(\cdot)$, as well as on any IOT. Impiication $2 \rightarrow 3$. If $a(t), u(t),-\infty<t<\infty$ are periodic functions and minimize (10. 1), then accoraing to Theorem 9.2 that minimum is equal to c_{0}. Let I be the period of the process. We set $T=k r$ and obtain

$$
\frac{1}{\tau} \int_{0}^{\tau} F(x(t), u(t)) d t=\frac{1}{k \tau} \int_{0}^{k \tau} F(x(t), u(t)) d t-C_{0} \text { as } k \rightarrow \infty
$$

From this it follows that the mean value of the functional over the period for $z(\cdot), u(\cdot)$ is equal to C_{6} which according to Theorem 9.2 is the exact lower bound of (10.2). The impilcation $3 \rightarrow 1$ was proved earlier (/2/, p.103).

Consider two forms of the statement of the problem of PPO. The first form defines the almost periodic IOT. The second form: to minimize the averaged functional (9.4) on the set of aimost periodic trajectories for which the limit (9.4) exists when $T \rightarrow \infty$. No supplementary assumptions are made relative to the controis, except about measurability. If x is a compactum and the system is uniformly controllable on x, then by virtue of Theorem 9.1 it follows from the fact that $x(\cdot)$ is the solution of the problem of PPO in the first stetement, if follows that $x(\cdot)$ is the solution of the problem of PPO in the second formalso.
11. The problem of PPO for a linear system with a quadratic functional. Assuming for the characteristic roots i_{i} of the matrix $A \equiv R^{n \times n}$

$$
\begin{equation*}
\operatorname{Re} \lambda_{i}<0,1 \leqslant i \leqslant n \tag{11.1}
\end{equation*}
$$

we shall consider the linear system of control

$$
\begin{equation*}
\frac{d z}{d t}=A x \div B u, \quad x \subseteq R^{n}, u \leqq R^{r} \tag{11.2}
\end{equation*}
$$

We denote by $L_{n}{ }^{2}$ the set of periodic vector functions $u(t) \in R^{r}$ with all possible periods that are summable together with the scalar product of $(u(t), u(t))$ on any compactum from $(-\infty$, ∞). According to (11.1) a single periodic trajectory (11.2) corresponds to each function $u(\cdot) \in L_{n}{ }^{2}$. We denote by $\Omega_{n}{ }^{2}$ the set of periodic pairs $x(\cdot), u(\cdot) \in L_{n}{ }^{2}$, and by Ω_{k} the subset of $\Omega_{n}{ }^{2}$ consisting of sinusoidal or constant functions, i.e. if $x(\cdot), u(\cdot) \cong \Omega_{g}$, then all components $x(t), u(t)$ are sinusoidal of equal frequencies, or constant.

Consider the sinusoidal control $\left.u_{\omega}(t)=\mid u_{1} \sin \left(\omega t+\psi_{1}\right), \ldots, u_{r} \sin \left(\omega t+\psi_{\pi}\right)\right)^{*}$ as $\omega \rightarrow \infty$. Then the sinusoidal trajectory which corresponds to it converges uniformly $x_{\omega}(t) \rightarrow 0$ with respect to t in accordance with (11.1). Hence it is possible to give meaning to the consideration
of the pair $x_{\infty}(\cdot), u_{\alpha}(\cdot)$ of sinusoidal trajectories and controls of infinite frequency, assuming $x_{\alpha}(t) \equiv 0$, and as $u_{\alpha}(\cdot)$ considering $u_{\omega}(t)$ as $\omega \rightarrow \infty$. We denote the set of these pairs of infinite frequency by $\Omega_{\omega=\alpha}$.

We now have the problem of maximizing the averaged functional

$$
\begin{equation*}
p=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}[(x, D x)+(u, G u)] d t \rightarrow \max \tag{11,3}
\end{equation*}
$$

without any assumptions as to the matrices D and G. Hence the maximization can be replaced by minimization. The parentheses (.,.) denote here a scalar product. As the set of pairs of Ω on which we seek (11.3), we take the subset of all pairs composed from the sums

$$
\begin{equation*}
u(t)=\sum_{i=0}^{\infty} u^{i}(t) ; x(t)=\sum_{i=0}^{\infty} x^{i}(t) ; u^{i}(\cdot), x^{i}(\cdot) \in \Omega_{n}^{2} \cup \Omega_{\omega=\infty} \tag{11.4}
\end{equation*}
$$

that satisfy the averaged limit on the control on each entry for given α_{k}

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{B}^{T} u_{k}^{2}(t) d t \leqslant \frac{\alpha_{k}^{2}}{2}, \quad 1 \leqslant k \leqslant r \tag{11.5}
\end{equation*}
$$

12. Contraction of the set of admissible pairs. We contract (11.4) to

$$
\begin{equation*}
u(t)=\sum_{i=0}^{r-1} u^{i}(t), \quad x(t)=\sum_{i=0}^{r-1} x^{i}(t) ; u^{i}(\cdot), x^{i}(\cdot) \in \Omega_{g} \cup \Omega_{\omega=\infty} \tag{12.1}
\end{equation*}
$$

Theorem 12.1. The exact upper limits (21.3) in problems (11.1)-(11.5) and (11.2), (11.2), (11.5) and (1.2.1) are the same.

Proof. Consider the control

$$
\begin{equation*}
u_{k}(t, N)=\frac{U_{k}^{0}}{\sqrt{2}}+\sum_{i=1}^{N-1} U_{k}{ }^{i} \sin \left(\omega_{i} t+\psi_{i k}\right) ; \quad 1 \leqslant k \leqslant r ; \quad \omega_{j} \neq \omega_{i} \text { wher. } i \neq i \tag{12.2}
\end{equation*}
$$

to which corresponds the stable solution (21.2) of the form

$$
\begin{equation*}
x_{p}(t, v)=\sum_{i=0}^{N-1} x_{j}^{i} ; \quad x_{j}{ }^{0}=\frac{X_{p}{ }^{\circ}}{\sqrt{2}} ; \quad x_{j}{ }^{i}=X_{\nu}{ }^{i} \sin \left(\omega_{i} t+\Phi_{i \psi}\right) ; \quad 1 \leqslant p \leqslant n \tag{12.3}
\end{equation*}
$$

It is assimed that $\omega_{*-1}=\infty$. The: $X_{\dot{L}}^{N-1}=0$ for $1 \leqslant p \leqslant n$.
Substitution of (12.2) intc (12.5) Yieids

$$
\begin{equation*}
\sum_{i=0}^{N-1}\left(C_{k}^{i}\right)^{2} \leqslant a_{k}{ }^{2}, \quad 1 \leqslant k \leqslant r \tag{22.4}
\end{equation*}
$$

We put

$$
\begin{align*}
& {\left[U^{i}\right]^{2}=\operatorname{col}\left[\left(U_{1}^{i}\right)^{2}, \ldots,\left(U_{r}^{i}\right)^{2}\right], \quad P_{u}^{i}=\frac{1}{2} \sum_{k=1}^{r}\left(U_{k}^{i}\right)^{i}} \tag{12.5}\\
& P_{x}^{i}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left[\left(x^{i}(t), D x^{i}(t)\right)+\left(u^{i}(t), G u^{i}(t)\right)\right] d t
\end{align*}
$$

Then because $\omega_{i} \neq \omega_{j}$ for $i \neq j$ we have $f o r(12.2$) and (12.3) the optimal criterion (12. 3) in the form

$$
\begin{equation*}
P(x(\cdot, v), u(\cdot, N))=\sum_{i=0}^{N-1} P_{x}^{i} \tag{12.6}
\end{equation*}
$$

Considering the relations (12.4) and (12.5), to prove the theorem it is sufficient to show that instead of (12.2), it is possitie to select a control of the form

$$
\begin{aligned}
& u_{k}(t, r)=\frac{C_{k}{ }^{\circ}}{\sqrt{2}}+\sum_{i=1}^{T} C_{k}{ }^{i} \sin \left(\omega_{i} t+\psi_{i k}\right), \quad 1 \leqslant k \leqslant r \\
& \omega_{i} \neq \omega_{j} \quad \text { when } \quad i \neq i, P_{u}{ }^{0} P_{u}{ }^{r}=0
\end{aligned}
$$

(i.e. where $\left[U^{\circ}\right]^{2}=0$ or $\left[U^{r}\right]^{2}=0$) such that for $x(t, r)$ that corresponds to (12.7), the inequality

$$
\begin{equation*}
P(x(\cdot, N), u(\cdot, N)) \leqslant P(x(\cdot, r), u(\cdot, r)), \sum_{i=0}^{N-1}\left\{U^{i}\right]=\sum_{i=0}^{r}\left[C^{i}\right]^{n} \tag{12.8}
\end{equation*}
$$

is correct since the functions $u(\cdot) \equiv L_{n}{ }^{2}$ can be expanded in a Fourier series, and condition (12.8) implies the possibility of reducing the number of harmonics, inciuding the constant, to the number of inputs of system (11.2) without violating constraints and without diminishing the criterion (11.3).

The vectors $\left[U^{i}\right]^{2}, 0 \leqslant i \leqslant N-1$ are linearly independent for $N>r$. Hence we can find simultaneously non-zero $\beta_{0}, \ldots, \beta_{N-1}$ such that

$$
\begin{equation*}
\beta_{0}\left[U^{i}\right)^{2}+\ldots+\beta_{N-1}\left[U^{i}\right]^{2}=0 \tag{12.9}
\end{equation*}
$$

It suffices to prove that for $N>r$ we can pass from N harmonics to $N-1$ so as to have

$$
\begin{align*}
& P(x(\cdot, N\rangle, u(\cdot, N)) \leqslant P(x\langle\cdot N-1), u(\cdot, N-1)) \tag{12.10}\\
& \sum_{i=0}^{N-1}\left[U^{i}\right]^{2}=\sum_{i=0}^{N-2}\left[C^{-i}\right]^{2}
\end{align*}
$$

Then inequality (12.8) may be obtained from (12.10) by induction.
If $\left[U^{i}\right]^{2}=0$, inequality (12.10) is proved. We assume that $\left|U^{i}\right| \neq 0$ when $0 \leqslant i \leqslant N-1$. Then by virtue of (12.9) among β_{i} we have positive and negative quantities. To be specific we assume $\beta_{0} \ldots, \beta_{v} \geqslant 0, \beta_{v+1}, \ldots, \beta_{N-1}<0$. Adaing I scalar equations (12.9), we obtain $\beta_{0} p_{u}{ }^{\circ}+\ldots+$ $\beta_{N-1} P_{u}^{N-1}=0$. Let us calculate two coefficients

$$
\begin{aligned}
k_{i} & =\frac{\beta_{0} P_{x}^{0}+\ldots+\beta_{1} P_{x}^{v}}{\beta_{0} P_{u}^{0}+\ldots+\beta_{v} P_{u}^{v}} \\
k_{s} & =\frac{\left(-\beta_{v-1}\right) P_{x}^{v-1}+\ldots+\left(-\beta_{N-1}\right) P_{x}^{N-1}}{\left(-\beta_{v-1} P_{u}^{v-1}+\ldots+\left(-\beta_{N-1}\right) P_{u}^{N-1}\right.}
\end{aligned}
$$

and assume to be specific that $k_{l} \leqslant k_{s}$. We sebect $\beta=\max \beta_{j}$ from $0 \leqslant i \leqslant v$. Assuming that $\beta=\beta_{1}$

$$
\frac{\beta_{0}}{\beta_{1}} P_{u}{ }^{2}+P_{u}^{2}+\frac{\beta_{2}}{\beta_{1}} P_{u}^{2}+\ldots+\frac{\beta_{v}}{\beta_{1}} P_{u}^{v}=\left(-\frac{\beta_{v-1}}{\beta_{1}}\right) P_{u}^{v-1}+\ldots+\left(-\frac{\beta_{N}}{\beta_{N-1}}\right) P_{u}^{N-1}
$$

Using the formulae

$$
C_{k}^{i}=\sqrt{1-\frac{\beta_{i}}{\beta_{1}}} C_{k}^{i}, \quad 0 \leqslant i \leqslant \lambda-1, \quad 1 \leqslant k \leqslant r
$$

we change the amplitudes of the harmonics u. The:

$$
P_{u}^{i}=\left(1-\frac{\beta_{i}}{\beta_{1}}\right) P_{4}^{i}, \quad \bar{P}_{x}^{i}=\left(1-\frac{\beta_{1}}{\beta_{1}}\right) P_{x}^{i}, \quad \mid[1]=0
$$

i.e. the number of hamonics is reduced by one ans

$$
\sum_{i=0}^{N-1}\left[C^{i}\right]^{2}=\sum_{i=0}^{N-1}\left(1-\frac{\beta_{i}}{\beta_{1}}\right)\left[U_{k}^{i}\right]^{2}=\sum_{i=0}^{N-1}\left[U_{k}^{i}\right]^{2}-\frac{1}{\beta_{1}} \sum_{i=0}^{N-1} \beta_{i}\left[U_{i}{ }^{i}\right]^{2}=\sum_{i=0}^{N-1}\left[U_{k}^{i}\right]^{2}
$$

From the inequality $k_{i} \leqslant k_{s}$, taking into account the equaiity of the denominators in k_{i}, k_{s}. we obtain

$$
\beta_{0} p_{x}^{0}+\ldots+\beta_{v}^{p_{x}}{ }^{v} \leqslant-\beta_{v-1} p_{x}^{v-1}-\ldots-\beta_{N-1} P_{x}^{N-1}
$$

Then the following criterior corresponds to the new control amplituies:

$$
\begin{aligned}
& P(\bar{x}(\cdot) \cdot \bar{u}(\cdot))=\sum_{i=0}^{N-1} P_{x}^{i}=\sum_{i=0}^{N-1}\left(1-\frac{\beta_{i}}{\beta_{i}}\right) P_{x}^{i}=P(x(\cdot, N), u(\cdot, N))- \\
& \quad \frac{1}{\beta_{1}}\left[\sum_{i=0}^{N-1} \beta_{i} P_{x}^{i}\right] \geqslant P(x(\cdot, N), u(\cdot, N))
\end{aligned}
$$

which is identical with (12.10) apart from the numbering of the harmonics.
The averaged functionai (11.3) of the form

$$
\begin{align*}
& I=I\left(U^{\circ}, \ldots, U^{\tau}, \omega_{2}, \ldots, \omega_{r}, \psi_{2}, \ldots, \psi_{r}\right) \rightarrow \min \tag{12.11}\\
& U^{i}=\operatorname{col}\left[U_{1}^{i}, \ldots, U_{r}^{i}\right], \quad \psi_{i}=\operatorname{col}\left[\psi_{i 1}, \ldots, \psi_{i r}\right]
\end{align*}
$$

corresponds to control in the form of the sum of harmonics (12.7). Here $U^{\circ}=0$ or $U^{r}=0$, i.e. the over-all number of harmonics, including the constant component, does not exceed r,
and the constraints (11.5) have the form

$$
\begin{equation*}
\sum_{i=0}^{r}\left(U_{k}^{i}\right)^{2} \leqslant \alpha_{k}^{2}, \quad 1 \leqslant k \leqslant r \tag{12.12}
\end{equation*}
$$

According to (12.12) and (12.7) the regions of variation of U^{i}, ψ_{i} are compact. All values from O to ∞ are admissible for ω_{1}. Hence condition (11.1) enables us to state the following theorem.

Theorem 12.2. The problem of non-linear programming (12.11), (12.12) has a solution which determines the solution of problem (11.2), (11.3), (11.5), (12.1) in the form (12.7), (12.1).

Corollary 12.1. The problem (11.1)-(11.5) has a solution that is provided by the solution of problem (12.11), (12.12) in the form (12.7), (12.1).

This shows that when the number of inputs $r \geqslant 2$ and the frequencies $\omega_{1}, \ldots, \omega_{r-1}$ obtained in the solution of problem (12.11), (12.12) are incommensurable, the solution is obtained in the class of almost periodic functions.

Fig. 1

Remark. Problem (11.1)-(11.5) may be treated as one of maximum power transmission to the load with power constraint on each input. Besides it is seen that the Theorems 12.1, 12.2 and Corollary 12.1 hold alsc when functional (11.3) is replaced by the functional

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int^{T}[(x, D x)+(x, L u)+(u, G u)] d t \rightarrow \max
$$

where L is the matrix n; r.
Example. Consider the problem of supplying maximum power to the resistance R in the electric circuit shown in Fig.1, with

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} i^{2} R d t \rightarrow \max
$$

and a constraint on the controi provided by the electromotive force $f(t)$

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} e^{2}(t) d t \leqslant \frac{\alpha^{2}}{2}, \quad \alpha>0
$$

We denote the voltage across the capacitor by x, the current by i, the capacitance by C, and we obtain Kirchhoff's second law $x+i R=\epsilon$. For the capacitance we have

$$
\frac{d s}{d t}=\frac{1}{C} i
$$

from which follows the differential equation

$$
\frac{d z}{d t}=(e-x)(R C)^{-1}
$$

According to Corollary 12.1 the solution is provided by a single harmonic $e=\alpha \sin \omega$, from
 $\omega=\infty$. This corresponds to the fact that the maximum transmission of power to the load, for the chain consideredhere, corresponds to frequencies as high as desired. Mathematically, this means that $e(t)=a \sin \omega t$ is considered as the solution when $\omega \rightarrow \infty$. The same problem for a chain differing from the one in Fig.l by the addition of an inductance L has a solution e $(1)=$ $\alpha \sin \omega t, \omega=(L C)^{-1}$, with the same maximum power.

REFERENCES

1. PANASYUK A.I. and PANASYUK V.I., On the asymptotic form of the trajectories of a class of problems of optimization. Avtomatika i Telemekhanika, No.8, 1975.
2. PANASYUK A.I. and PANASYUK V.I., The Asymptotic Optimization of Non-linear Control systems. Minsk, Izd. Belorusskogo Univ. 1977.
3. PANASYUK A.I. and PANASYUK V.I., On the behaviour of infinite optimal trajectories of a class of continuous dynamic systems. Differents. Uramneniya, 6, 1982.
4. PANASJUK A. and PANASJUK V., Die Wichtigsten leitsätze der magistralen asymptotischen Theorie der optimalen Steuerung. In: 27 Intern. Wiss. Kolloq., Ilmenau 1982. 5, Vortraqsz., 1, 2, Ilmenau.
5. ROMANOVSKII I.V., Algorithms for Solving Extremal Problems. Moscow, Nauka, 1977.
6. GUSEV D.E. and YAKUBOVICH V.A., The main line theorem in the problem of continuous optimization. Vestn. LGU. Ser. Matem., Mekhan., Astron., 1, 1983.
7. DUKEL'SKII M.S. and TSIRLIN A.M., Conditions of unsteadiness of the optimal steady mode of a controlled object. Avtomatika i Telemekhanika 9, 1977.
8. Chernous'ko f.l., akUlenko L.d. and Sokolov b.N., Control of Oscillations, Moscow, Nauka, 1980.
9. ANISOVICH V.V. and KRYUKOV B.I., on the optimization of almost-periodic oscillations. Avtomatika i Telemekhanika, 12, 1981.
10. VASIL'EVA A.B. and DIMITRIEV M.G., Singular perturbations in problems of optimal control. In: Progress of Science and Technology. Mathematical Analysis. 20, Moscow, VINITI, 1982.
11. PLOTNIKOV V.A., The asymptotic investigation of equations of controlled motion. Izv. AN SSSR, Tekhnicheskaya Kibernetika, 4, 1984.
12. PANASYUK V.I., The problems of main trajectories in discrete problems of optimal control. Avtomatika i Telemekhanika, 8, 1981.
13. PANASYUK V.I., Main periodic trajectories in discrete problems of optimal control. Avtomatika i Telemekhanika, 9, 1983.
14. FLEMING W. and RISCHEL R., Optimal Control of Determinate and Stochastic Systems. Moscow, Mir, 1978.
15. Kelly J.L., General Topology. Moscow, Nauka, 1981.

PMM U.S.S.R., Vo1.49,No. $4, \mathrm{pp}, 413-422,1985$
Printed in Great Britain
$0021-8928 / 85 \$ 10.00+0.00$
Pergamon Journals Ltd.

A game of optimal pursuit of one non-inertial object by TWO INERTIAL OBJECTS*

A.YU. LEVCHENKOV and A.G. PASHKOV

A game in which one controlled object is pursued by two others is studied. The pursuing objects are inertial, and the pursued object is not. The duretion of the game is fixed. The payoff functional is the distance between the pursued object and the closest pursuer at the instant when the game ends. An algorithm for determining the payoff function for all possible positions is constructed. It is shown that the game space consists of several domains in which the payoff is expressed analytically, or is determined by solving a certain non-linear equation. Strategies of the pursuers which guarantees them a result as close to the game payoff as desired are indicated.

The optimal solution of a game of pursuit when one inertial object pursues a non-inertial one was obtained earlier in / / / . The present paper is related to the investigations reported in $/ 1-10 /$.

1. Let the motions of the pursuers $P_{i}\left(x^{i}\right)(i=1,2)$ and of the pursued object E (z) be described by the equations

$$
\begin{equation*}
x_{1}^{* i}=x_{3}^{i}, \quad z_{3}^{* i}=u_{1}^{i}, \quad x_{2}^{* i}=x_{4}^{i}, \quad x_{4}^{* i}=u_{2}^{i}, \quad z_{1}^{*}=v_{1}, \quad z_{2}^{*}=v_{2} \tag{1,1}
\end{equation*}
$$

The control vectors of the pursuers and the pursued setisfy the constraints

$$
\begin{equation*}
\left(\left(u_{1}^{i}\right)^{2}+\left(u_{2}^{i}\right)^{2}\right)^{1}: \leqslant \mu>0, \quad\left(v_{1}^{2}+v_{2}^{2}\right) \leqslant v \tag{1.2}
\end{equation*}
$$

The game is studied over the time interval $\left[t_{0}, v\right)$. The payoff functional is the distance between the pursued object and the nearest pursuer at the instant $t=0$ that the game ends, i.e.

$$
\begin{equation*}
\gamma=\min _{i}\left[\left(z_{1}(\hat{v})-x_{1}^{i}(\hat{v})\right)^{2} \div\left(z_{2}(v)-x_{2}^{i}(\theta)\right)^{2}\right]^{1} \tag{1.3}
\end{equation*}
$$

As a result of the change of variables $y_{j}^{i}=x_{j}{ }^{i}+(0-1) x_{i-2}^{i}(j=1,2)$, which means passing to considering the centres of regions of attainability of the inertial objects, relations (1.1)-(1.3) take the form

$$
\begin{align*}
& y_{j}{ }^{\prime}=(\vartheta-t) u_{j}{ }^{i}, \quad y_{j}{ }^{i}\left(t_{0}\right)=x_{j}{ }^{i}\left(t_{0}\right) \div\left(\theta-t_{0}\right) x_{j-2}^{i}\left(t_{0}\right) \tag{1.4}\\
& \gamma=\min _{i}\left[\left(z_{1}(\theta)-y_{1}{ }^{i}(\theta)\right)^{2} \div\left(z_{2}(\theta)-y_{2}{ }^{i}(\theta)\right)^{2}\right]^{2} \tag{1.5}
\end{align*}
$$

At the instant $t=0$ the values of γ found from (1.3) and (1.5) are identically equal.
We denote the centres of the attainability regions by P_{i}. For the positions where $P_{1}{ }^{c}=P_{2}{ }^{c}$, the payoff of the two-to-one game, denoted by p^{21}, is identical with the payoff of the one-to-one game denoted by ρ^{11}. Henceforth we consider those initial positions for which $P_{1}^{\circ} \neq P_{i}^{\circ}$.

[^1]
[^0]: *Prik1.Matem.Mekhan.,49,4,524-535,1985

[^1]: *Prikl.Matem.ifekhan.,49,4,536-547,1985

